

北京芯同汇科技有限公司 BeiJing Chipment Science Technology Co.,Ltd

地址:北京市昌平区沙河镇青年创业大厦B座 111-120完 电话: 010-53051737 /13683506332/13661172827 网址: www.chipment.com

1. XT-360 便携式频谱仪概述1
1.1 产品特点
1.2 便携频谱分析仪指标4
2. 按键、端口和功能简介 6
2.1 端口及指示灯介绍6
2.2 功能及使用7
2.2.1 实时频谱功能
2.2.2 瀑布图(色谱图)功能
2.2.3 热力图功能13
2.2.4 设置界面15

北京芯同汇科技有限公司 BeiJing Chipment Science Technology Co.,Ltd

3.应用与示例	18
3.1 功能及使用	18
3.2 测试范例	18
3.2.1 单载波测试	18
3.2.2 滤波器测试	20
3.2.3 宽带噪声源测试	21
3.2.4 宽带天线接收测试	22
3.2.5 通信 4G 信号测试	24
3.2.6 运营商低频信号测试	25
3.2.7 对讲机测试	26
3.2.8 轿车钥匙信号测试	26

北京芯同汇科技有限公司 BeiJing Chipment Science Technology Co.,Ltd

4. 用户须知与保养	29
4.1 正常使用注意事项	29
4.2 应用环境注意事项	29
4.3 电池注意事项	

地址:北京市昌平区沙河镇青年创业大厦B座 111-120完

电话: 010-53051737 /13683506332/13661172827

网址: www.chipment.com

1. XT-360频谱仪概述

1.1 产品概述

XT-360是一款便携式频谱仪,频率能连续覆盖30M~6GHz, 灵敏度高(最高-132dBm@3kHz RBW),高清屏显示,6寸手机 大小,内置4800mAh电池,质量不到400克。适合研发、中试、生 产、外场测试等众多应用。支持多种测试模式(实时频谱、瀑布图、 热力图),配合旋钮(顶部旋转编码器,按压表示确定)和功能按 键操作,简单方便。

仪器版本分为基础版(XT360)、AT版本(XT360-AT)和带 GPS和SD卡的AT版本(XT360-PRO,全功能版本)。仪器充电口

1

和数据接口二合一,物理形态为microUSB接口,通过外置USB转 串口模块可实现PC端的USB口控制和数据采集,通信协议为内置AT 指令集(配套独立的AT编程指南)。此外,pro版本除AT数据交互 功能外,还内置GPS和SD卡(32GB),可以实现设备坐标定位, UTC时间同步,以及记录频谱波形并回放频谱波形动画,还可以拔 出SD卡将路测数据大文件导出等。

便携频谱应用广泛,如上图所示。

在运营商应用中,能覆盖所有sub-6G频段范围,覆盖各运营商的所有频率,包括新建网的5G通信的各个频段(具体的频段分配可参考无线电委员会规定或各运营商的频段)。
 在军工与警用领域,可作为演习与战场电磁评估、技术侦

便携式频谱仪用户手册

查、通信、雷达以及各射频单元测量与维修等等应用。

- 在高校应用领域,可批量作为电子类相关专业专科、本科 与研究生的竞赛、课题与实验用设备。
- 在电网应用中,可作为泛在电力物联网的测试与生产工具,
 电网专用频段(如230MHz专用频段)的测试工具。
- 在民航应用中,可作为民航专用频段的通信和机载无线设备的测试工具。
- 在广电应用领域,可作为有线闭路电视信号的监测工具, 也可作为FM电台、应急频段、黑广播的监测工具。
- 在轨道交通领域,可作为铁路无线专网(GSM-R标准,未 来LTE-R标准)路测工具、地铁无线列控系统的在线监测仪器。
- 在无人机领域,如行业无人机通信与干扰测试、消费无人 机信号测试。
- 在无线音响领域,如赛事、舞台、演唱会和晚会中,设置
 话筒频率规划、射频电缆的信号衰减、信道的干扰以及信
 号覆盖的强弱等等。
- 在物联网的研发、生产、测试、现成干扰查询等领域,比如:网关和无线模组测量、遥控器、对讲机、无线玩具等等。
- 在车载设备领域,比如:无线车钥匙评估、车载无线设备、
 跟踪器检测、车辆电磁干扰与屏蔽测试、车联网V2X的测试工具。

1.2 产品功能

频谱仪的总功能分为实时频谱模式、热力图模式和瀑布图模式。

- 实时频谱分析模式:实时频谱曲线扫描,可以设置SPAN(扫宽) /RBW(分辨带宽)/CENT(中心频率)/MARKER(标记点) 功能,或设置开始和结束频率,MAXHLOD(最大值保持)功 能,最大功率(MAX/PEAK)自动检测与标识点等功能。
- 频谱瀑布图模式:显示一段时间(时间长短和扫宽以及RBW相关,最短几秒,最长可达几十分钟)内随时间变化的频谱分布,通过颜色红蓝来对应信号相对强弱,类似瀑布一样记录频谱随时间的分布,便于查看频率干扰或发射泄漏等问题
- 频谱热力图模式:显示一段时间内的频谱重复出现的密度,单次出现为蓝色,重复次数越多显示越趋于红色,便于分析一段时间的频谱统计特征。

1.1 频谱仪S11反射参数测试示意图

1.3 便携频谱分析仪指标

项目	参数
----	----

便携式频谱仪用户手册

型号	XT-360			
S11反射系数	-15~-20dB			
(典型值)	-15~-200B			
频率范围(MHz)	30~6000MHz			
功率误差	不大于1dB(30MHz~3GHz,校准后)			
	不大于2dB(全频校准后)			
RBW(kHz)设置	3、10、20、50、100、200、500kHz			
DANL(平均底噪,	-130dBm@3kHz RBW(典型值)			
3kHz RBW)	-132dBm@3kHz RBW(最小值)			
	-163dBm/Hz(典型值)			
	-165dBm/Hz(最小值)			
幅度精度	+-1dBm			
	-132 ~ -25dBm (30M~1.4GHz)			
信号测量	-128 ~ -20dBm (1.4G~4.4GHz)			
线性范围	$-120 \sim -10$ dBm (4.4G \sim 6GHz)			
	(更大信号加衰减器接入)			
每个点扫描最快时间	1ms (RBW=500kHz)			
显示刷新频率	最快8Hz(每秒刷新8屏)			
中心与扫描宽度设置	支持			
Marker(标记点)	支持			
峰值自动检测	支持			
MAXHOLD功能	支持			
参考电平可调	支持			
瀑布图 (色谱图)	支持			
热力图	支持			
内置RTC时钟	支持			
内置SD卡	支持(仅XT360-Pro型号)			
串口AT指令集	支持(XT360-AT型号和XT360-Pro型号)			
GPS	支持(仅XT360-Pro型号)			
睡眠时间设置	支持			
语言种类	英语、简体中文、繁体中文			
液晶分辨率	TFT 800×480			
液晶亮度设置	支持			
液晶尺寸	5寸			
射频接口	SMA-K			
电池容量	4800mAh (典型)			

便携式频谱仪用户手册

电池类型	松下21700锂电池
充电时间	4~5小时
适配器规格	5V/2A(方便充电宝使用)
充电接口	Micro USB接口
AT数据接口	Micro USB接口(内部实际UART串口)
电池续航时间	5~6小时
外形尺寸	135mm*101mm*30mm(不包含旋钮及天线高度)

2. 按键、端口和功能简介

2.1 端口介绍

2.1 端口及指示灯介绍

- 指示灯在正常开机时亮蓝色,充电时亮红色,充电完成亮 绿色。
- 2. USB接口为Micro USB,使用电源适配器为5V/2A输出。

 天线接口为标准SMA母头(SMA-K外螺内孔),应与标准 公头(SMA-J内螺内针)的天线或射频线配合使用。注意, SMA接口正常使用寿命约1千次(超过使用寿命后,射频 信号接触损耗变大或接触不良),频繁更换天线或使用射频 电缆,应使用配送的SMA转接头延长原接口寿命。

2.2 功能及使用

按键功能总体介绍:

- 功能按键(F1~F6)与液晶菜单标号一一对应,选择并按 下分别进入各对应功能;
- POWER (F6) 键是开/关机键,长按POWER (F6) 键关机
 (注:关机操作在主界面下有效,其他界面为返回主界面操作)。

2.2.1 实时频谱功能

2.2 实时频谱图设置(上页)

对于仪器顶部旋转编码器,左右旋转可调节对应数值大小,下 按旋钮表示确认当前参数。

1. F1按键对应设置中心频率功能(注:频率设置范围

30.01~5999.98MHz):

2.3 中心频率设置子菜单

- 1) F3长按对应设置调节步进精度为1000MHz;
- 2) F3短按对应设置调节步进精度为100 MHz;
- 3) F4长按对应设置调节步进精度为10 MHz;
- 4) F4短按对应设置调节步进精度为1 MHz;
- 5) F5短按对应设置调节步进精度为0.1 MHz;
- 6) F5长按对应设置调节步进精度为0.01 MHz;
- 7) F6短按对应返回上一界面。
- F2按键对应设置扫描带宽功能(注:设置带宽范围 0~1500MHz,具体操作同中心频率设置)。
- F3按键对应设置开始频率功能(注:设置开始频率范围
 30MHz~结束频率,具体操作同中心频率设置)。

8

- F4按键对应设置结束频率功能(注:设置频率范围 开始频率~6000MHz,具体操作同中心频率设置)。
- F5按键对应设置标记点功能(注:频率测量范围开始频率~到 结束频率):

2.4 标记点设置子菜单

- F2对应设置输入标记点测试频率(注:具体操作同中心频 率设置);
- 2) F3对应设置标记点频率移动到屏幕的中心;
- 3) F4对应设置最大频率移动到屏幕的中心;
- 4) F6对应返回上一界面。
- 6. F6对应设置切换到下页。
- 7. 截屏功能(仅限PRO版本)

同时按F1和F5,右下角灯闪烁,截屏成功。查询截图文件参照 设置界面F6功能介绍。

2.5 实时频谱图介绍(下页)

 下一页中的F1对应设置分辨率,默认为自动(注:分辨率设置 范围 3、10、20、50、100、200、500kHz):

2.6 分辨率设置子界面

F2对应设置手动输入分辨率(注:手动旋钮设置后按压确定):

分辨率: ●自动	300kHz				返回
F1	F2	F3	F4	F5	F6
		\bigcirc			POWER

2.7 分辨率输入界面

- 可直接通过旋钮在3、10、20、50、100、200、500kHz 间切换。
- 2) F1对应设置自动设置分辨率模式。
- 3) F6对应返回上一界面功能。

备注: PRO版本增加记录功能如图:

分加率自动	参考由平 -30 元=	RYAN	记录		上页	
F1	F2	F3	F4	F5	F6	
\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
	10000				POWER	

按F4开始记录,再次按F4结束。查询录制文件参照设置界面F5 功能介绍。

- 9. F2按键对应参考电平设置功能(注:参考电平范围-140~0dBm, 具体操作同中心频率设置)。
- 10. F3键对应设置最大保持功能开启或关闭。

2.2.2 瀑布图(色谱图)功能

2.8 瀑布图/色谱图设置(菜单上页)

菜单上页有:中心频率、扫描带宽、开始频率、结束频率、标 记点、分辨率和参考电平操作和功能同上(同实时频谱界面的操作)。

2.9 瀑布/色谱图设置(菜单下页)

菜单下页有:设置分辨率、设置参考电平范围,以及设置屏幕 数据停止或刷新功能

- F3键对应设置色谱更新停止或开始,可将瀑布图在任意时刻下 停止更新,可以详细分析总体频谱功率分布(注:在此模式下, 只有标记点功能和和停止/开始功能可用)。
- 标记点功能,可以通过旋钮左右调节,屏幕会出现一条竖线清 晰标记频率数值,方便分析频谱干扰和信号频率。

2.2.3 热力图功能

2.10 热力图效果与设置(上页)

中心频率、扫描带宽、开始频率、结束频率、标记点、分辨率 和参考电平操作和功能同上(实时频谱界面操作)。

如上图中所示,最左边的红色条块为2320~2340M的中国移动

4G信号(信号带宽20MHz),右边是3个WiFi热点的频谱(每个WiFi 信道20MHz宽度),测试时距离WiFi路由器较远。

2.11 热力图设置(下页)

 F3键对应设置手动清屏功能。清屏完成后,频谱曲线重新 开始刷新和统计,方便观看不同时间段的信号统计效果。

2.2.4 设置界面

2.12 设置

F1、F2、F3和F4按键显示设置对应。下按旋钮对应确定功能, 顶部旋钮左右旋转可调节对应参数设置。长按F6键对应返回上一界 面功能。

- 休眠设置,按键F1后可通过旋钮调节时间,调节后可通过确定 键进行确定。(注:范围1~60分钟或设置为"从不自动关机")
- 时间设置,按键F2后进入时间设置,然后F1~F6分别与年月日 时分秒对应,设置完成后统一按压编码器确定完成设置。
- 亮度设置,选择按键F3后可通过旋钮调节亮度,调节后可通过 确定键进行确定。(注:亮度相对范围0~100%)。
- 语言设置,选择按键F4后可通过旋钮选择语言,语言选择完成 后可通过确定键进行确定。(语言有简体中文、繁体中文和英文)

5. 文件存储(仅限 PRO 版本),按键 F5 后进入子菜单。

5.1 按 F1 进入截图文件,通过旋钮调节选择文件,选择好后 通过确认键确定。

5.2 按 F2 进入录像文件,通过旋钮调节选择文件,选择好后 通过确认键确定。

5.2.1 进入录像文件播时, F1 键对应的功能键为加速播放, 分别有×1,×2,×3,按F1 切换。F2 键对应的功能键为放慢播 放分别有×1,×2,×3,按F2 切换。

5.2.2 F3 键对应功能键可切换运行和停止,当进入 STOP 界面,F2 为后退,F3 为前进,每按一次前进或后退一次。F1 对应的是 AT,可以通过 AT 串口给串口工具发送数据包,此数据包为当前屏幕频谱数据。

5.3 删除文件功能,通过旋钮调节选择文件,同时按 F1 和 F3 删除左侧箭头对应的文件。

6. GPS 功能(仅限 PRO 版本),按键 F6 后进入,按F1 为 GPS 开启,天线放置在户外空旷位置,数秒后,屏幕左上方的时间 校准后,GPS 定位成功。按F6 返回设置页面,再常按F6 返回

16

到主菜单,按 F1 进入实时屏谱图,在屏幕右上方 GPS 变绿为 定位成功。

3.应用与示例

3.1 功能及使用

为了提高天线口灵敏度,频谱的高增益LNA默认打开,使用前 请注意,线性的输入信号功率尽量不超过-20dBm(具体范围参考 指标列表),超过后信号频谱会开始失真出现非线性分量,功率开 始出现误差,如果信号功率超过0dBm可能会损坏频谱仪前端。

对于准确的功率测试,使用射频电缆输入,输入前需要加入衰减器(如30dB/50dB或更大范围的固定或可调的射频衰减器)。此外,频谱射频输入口不能带直流偏置的信号。在强无线信号环境下

(比如在30dBm发射天线附近1米测试接收信号)也请在天线口先 加入衰减器后进行测试。

无线测试模式下,需要配合相应频段的天线进行测试。无线测 试时因为信号衰减和距离成指数关系(具体的大尺度无线信道衰减 模型,其衰减参考奥村和hata模型等统计模型),所以测得的功率 与实际发射的功率偏小很多,即使在收发位置固定的条件下,接收 信号功率也会跳动3~5dB,这个是正常现象。

3.2 测试范例

3.2.1 单载波测试

无线系统的单载波测试是最简单和方便的一种测试模式,可以测量到系统的最大发射功率、频谱纯度以及相对频偏等。

便携式频谱仪用户手册

上图是1.2GHz的单载波射频信号,有线接入频谱的测试图, -60dBm显示功率是-60.5dBm(仪器已经校准)。用户在使用单载 波测试的时候,可以将仪器替换为自己的设备,发射单载波即可。

在下图中,发射0dBm的信号,由于信号较大,需要经过20dB 的同轴衰减器后进入频谱仪;频谱仪显示为-20.0dBm信号;很小 的误差。

便携式频谱仪用户手册

加20dB衰减器的测试图

3.2.2 滤波器测试

使用宽带射频噪声源(NS-930型号,我司另外产品)作为信号 源,经过一个404M中心频率的SAW带通滤波器,然后经过40dB 衰减器进入频谱仪(可不加),测试的结果图如下所示,能比较清 晰的显示滤波器的幅度频率特性。不加衰减器能更好的显示滤波器 的衰减特性。

便携式频谱仪用户手册

3.2.3 宽带噪声源测试

使用宽带射频噪声源(NS-930型号,我司另外产品)作为信 号源,然后经过70dB衰减器(30dB+40dB)进入频谱仪,测试的 结果图如下所示,能比较清晰的显示噪声源的频率特性,在任意 200M范围内比较平坦,在1GHz后内幅度略有衰减。

便携式频谱仪用户手册

3.2.4 宽带天线接收测试

使用宽带对数周期天线(400M~6G,我司产品)作为天线, 使用热力图模式,测试的结果图如下所示,能比较清晰的显示高频 段(3~5GHz)的几个载波信号。

便携式频谱仪用户手册

便携式频谱仪用户手册

3.2.5 通信4G信号测试

使用4G频段(2.3~2.7G)作为天线,使用热力图模式,测试的结果图如上所示,能比较清晰的显示高频段左边2320~2340M的中国移动4G信号,中间2.4~2.5G有几个WiFi路由器的信号;右边2575~2635M附近有三个载波的中国电信的4G信号。

3.2.6 运营商低频信号测试

使用1.8G频段天线,使用热力图模式,测试的结果图如上所示, 能比较清晰的窄带语音和宽带数据的载波信号。

3.2.7 对讲机测试

使用433MHz天线加60dB衰减器。使用实时频谱模式测试5w 对讲机发出功率和频点。

3.2.8 轿车钥匙信号测试

便携式频谱仪用户手册

在热力图模式中,使用433MHz天线测试轿车钥匙,可发现 433.92MHz频点的是其载波,在发送数据时其带宽变宽。进一步分 析,可以使用IQ信号解调器(我司另外产品)来分析,其测量的时 域波形如下图所示。

便携式频谱仪用户手册

车钥匙无线IQ解调波形(福特)

车钥匙无线IQ解调波形(普通)

4. 用户须知与保养

4.1 正常使用注意事项

- 注意大信号范围不要超标,以免损坏仪器接收前端。
- 安装天线或射频电缆时,拧紧螺纹,但不要过分用力以免 滑丝。
- 应保持足够电量,以免无电关机;
- USB接口脆弱,插拔不能过分用力,也避免侧向受力。
- 注意储存温度和使用温度范围,如不要放在汽车中暴晒。
- 长途运输应放在包装盒或手提箱中,避免硬物混装划伤液 晶屏。
- 推荐使用转接头,以增加原接口寿命
- 射频接口每3个月清洗一次,使用无水酒精的棉签擦拭。

4.2 应用环境注意事项

- 仪器进水、摇动有异响或出现其它明显异常时,请勿使用。
- 雷雨时切勿测试户外设备,包括安装有避雷器的户外设备。
- 正常保修期为一年,如摔碰、进水及私自拆卸,不在保修 范围。
- 冬天从室外进入有暖气的室内,避免仪器内部结露,如结 露应烘干后在开机。

4.3 电池注意事项

- 仪器开机或充电时应该远离易燃易爆物品,注意通风,仪器和充电器上不得覆盖其它物品。
- 为了保护电池,请经常为仪器充电,尽量不要等缺电警告时在充电。
- 禁止长期浮充,如果仪器长时间使用,请不要连续充电工作,请间歇使用下电池以增加电池寿命。
- 仪器长时间不用,应充满电以后储存。储存期间至少三个 月充满一次电。